Morphological granulometry for classification of evolving and ordered texture images.
Khatun, Mahmuda and Gray, Alison and Marshall, Stephen (2011) Morphological granulometry for classification of evolving and ordered texture images. In: 19th European Signal Processing Conference -EUSIPCO 2011, 2011-08-29 - 2011-09-02.
Preview |
PDF.
Filename: 1569424689.pdf
Final Published Version Download (738kB)| Preview |
Abstract
In this work we investigate the use of morphological granulometric moments as texture descriptors to predict time or class of texture images which evolve over time or follow an intrinsic ordering of textures. A cubic polynomial regression was used to model each of several granulometric moments as a function of time or class. These models are then combined and used to predict time or class. The methodology was developed on synthetic images of evolving textures and then successfully applied to classify a sequence of corrosion images to a point on an evolution time scale. Classification performance of the new regression approach is compared to that of linear discriminant analysis, neural networks and support vector machines. We also apply our method to images of black tea leaves, which are ordered according to granule size, and very high classification accuracy was attained compared to existing published results for these images. It was also found that granulometric moments provide much improved classification compared to grey level co-occurrence features for shape-based texture images.
ORCID iDs
Khatun, Mahmuda, Gray, Alison ORCID: https://orcid.org/0000-0002-6273-0637 and Marshall, Stephen ORCID: https://orcid.org/0000-0001-7079-5628;-
-
Item type: Conference or Workshop Item(Paper) ID code: 33201 Dates: DateEventAugust 2011PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Science > Mathematics and Statistics
Faculty of Engineering > Electronic and Electrical Engineering
Technology and Innovation Centre > Sensors and Asset ManagementDepositing user: Pure Administrator Date deposited: 13 Sep 2011 14:57 Last modified: 30 Aug 2024 00:30 URI: https://strathprints.strath.ac.uk/id/eprint/33201