Morphological granulometry for classification of evolving and ordered texture images.
Khatun, Mahmuda and Gray, Alison and Marshall, Stephen (2011) Morphological granulometry for classification of evolving and ordered texture images. In: 19th European Signal Processing Conference -EUSIPCO 2011, 2011-08-29 - 2011-09-02.
![]()
|
PDF
1569424689.pdf Final Published Version Download (738kB)| Preview |
Abstract
In this work we investigate the use of morphological granulometric moments as texture descriptors to predict time or class of texture images which evolve over time or follow an intrinsic ordering of textures. A cubic polynomial regression was used to model each of several granulometric moments as a function of time or class. These models are then combined and used to predict time or class. The methodology was developed on synthetic images of evolving textures and then successfully applied to classify a sequence of corrosion images to a point on an evolution time scale. Classification performance of the new regression approach is compared to that of linear discriminant analysis, neural networks and support vector machines. We also apply our method to images of black tea leaves, which are ordered according to granule size, and very high classification accuracy was attained compared to existing published results for these images. It was also found that granulometric moments provide much improved classification compared to grey level co-occurrence features for shape-based texture images.
Creators(s): |
Khatun, Mahmuda, Gray, Alison ![]() ![]() | Item type: | Conference or Workshop Item(Paper) |
---|---|
ID code: | 33201 |
Keywords: | morphological granulometric moments, cubic polynomial regression, evolution time scale , texture images, Electrical engineering. Electronics Nuclear engineering |
Subjects: | Technology > Electrical engineering. Electronics Nuclear engineering |
Department: | Faculty of Science > Mathematics and Statistics Faculty of Engineering > Electronic and Electrical Engineering Technology and Innovation Centre > Sensors and Asset Management |
Depositing user: | Pure Administrator |
Date deposited: | 13 Sep 2011 14:57 |
Last modified: | 20 Jan 2021 14:45 |
URI: | https://strathprints.strath.ac.uk/id/eprint/33201 |
Export data: |