Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Optical fibre coupled ocular spectrometer for measurement of drug concentration in the anterior eye-applications in pharmaceuticals research

Miller, Joe and Wilson, W S and Blue, Robert and Wilson, Clive and Uttamchandani, Deepak (2010) Optical fibre coupled ocular spectrometer for measurement of drug concentration in the anterior eye-applications in pharmaceuticals research. IEEE Transactions on Biomedical Engineering, 57 (12). pp. 2903-2909. ISSN 0018-9294

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper describes in detail a novel optoelectronic system designed to measure drug absorption in the anterior segment of the eye following topical application of drug formulations. This minimally invasive measurement technique offers both a method for determining drug concentration in human eyes, and demonstrates an alternative to current testing processes in model animals, which require paracentesis of the anterior chamber of the eye. The optoelectronic technique can be used with formulations, which possess appropriate spectral characteristics, namely unique absorption or fluorescence spectra. Preliminary experiments using our measurement system have been performed in rabbit and man, where we have been successful in achieving the direct measurement of topically applied brimonidine, an alpha-2 agonist used in the treatment of glaucoma. This demonstrates the feasibility of performing real-time, in vivo testing of ophthalmic drug formulations in the eye of human test subjects. We further demonstrate the novel application of the optoelectronic system for detection of topically applied UV-absorbing compounds in rabbit cadaver eyes, with a view to evaluating potential ocular sunscreen formulations. In summary, this method can be applied for the rapid comparison of the penetration of different drug formulations into the anterior eye at greatly reduced cost and time.