In silico modelling of drug-polymer interactions for pharmaceutical formulations
Ahmad, Samina and Johnston, Blair F and Mackay, Simon P and Schatzlein, Andreas G and Gellert, Paul and Sengupta, Durba and Uchegbu, Ijeoma F (2010) In silico modelling of drug-polymer interactions for pharmaceutical formulations. Journal of the Royal Society Interface, 7 (Supple). S423-S433. (https://doi.org/10.1098/rsif.2010.0190.focus)
Full text not available in this repository.Request a copyAbstract
Selecting polymers for drug encapsulation in pharmaceutical formulations is usually made after extensive trial and error experiments. To speed up excipient choice procedures, we have explored coarse-grained computer simulations (dissipative particle dynamics (DPD) and coarse-grained molecular dynamics using the MARTINI force field) of polymer-drug interactions to study the encapsulation of prednisolone (log p = 1.6), paracetamol (log p = 0.3) and isoniazid (log p = -1.1) in poly(L-lactic acid) (PLA) controlled release microspheres, as well as the encapsulation of propofol (log p = 4.1) in bioavailability enhancing quaternary ammonium palmitoyl glycol chitosan (GCPQ) micelles. Simulations have been compared with experimental data. DPD simulations, in good correlation with experimental data, correctly revealed that hydrophobic drugs (prednisolone and paracetamol) could be encapsulated within PLA microspheres and predicted the experimentally observed paracetamol encapsulation levels (5-8% of the initial drug level) in 50 mg ml(-1) PLA microspheres, but only when initial paracetamol levels exceeded 5 mg ml(-1). However, the mesoscale technique was unable to model the hydrophilic drug (isoniazid) encapsulation (4-9% of the initial drug level) which was observed in experiments. Molecular dynamics simulations using the MARTINI force field indicated that the self-assembly of GCPQ is rapid, with propofol residing at the interface between micellar hydrophobic and hydrophilic groups, and that there is a heterogeneous distribution of propofol within the GCPQ micelle population. GCPQ-propofol experiments also revealed a population of relatively empty and drug-filled GCPQ particles.
ORCID iDs
Ahmad, Samina, Johnston, Blair F ORCID: https://orcid.org/0000-0001-9785-6822, Mackay, Simon P ORCID: https://orcid.org/0000-0001-8000-6557, Schatzlein, Andreas G, Gellert, Paul, Sengupta, Durba and Uchegbu, Ijeoma F;-
-
Item type: Article ID code: 33145 Dates: DateEvent2010PublishedSubjects: Medicine > Pharmacy and materia medica Department: Strathclyde Business School > Strategy and Organisation
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical SciencesDepositing user: Pure Administrator Date deposited: 06 Sep 2011 13:57 Last modified: 11 Nov 2024 09:49 URI: https://strathprints.strath.ac.uk/id/eprint/33145