Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Efficient subband adaptive filtering with oversampled GDFT filter banks

Weiss, Stephan and Lampe, L. and Stewart, Robert (1997) Efficient subband adaptive filtering with oversampled GDFT filter banks. In: IEE Colloquium on Adaptive Signal Processing for Mobile Communication Systems, 1997-10-29 - 1997-10-29.

[img] PDF
weiss97c.pdf
Accepted Author Manuscript

Download (741kB)

Abstract

This paper addresses the numerical efficiency of adaptive filtering implemented in subbands. Our approach first focuses on oversampled GDFT (generalized DFT) filter banks and their potential benefits over other possible subband decompositions. Although the subband filters presented use complex arithmetic, the discussed method allows factorization into a real valued polyphase network, followed by a complex GDFT modulation, which can be mostly implemented via an FFT. Secondly we discuss the advantages and potential savings that can be gained by processing complex subband signals, with particular reference to adaptive system identification problems, for which we give demonstrations of the potential benefits of our GDFT approach compared to adaptive identification in both fullband and critically sampled DCT-IV based pseudo-QMF subbands.