Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

A bounded distance metric for comparing tree structure

Connor, R. and Simeoni, F. and Iakovos, M. and Moss, R. (2011) A bounded distance metric for comparing tree structure. Information Systems, 36 (4). pp. 748-764. ISSN 0306-4379

Full text not available in this repository. Request a copy from the Strathclyde author


Comparing tree-structured data for structural similarity is a recurring theme and one on which much effort has been spent. Most approaches so far are grounded, implicitly or explicitly, in algorithmic information theory, being approximations to an information distance derived from Kolmogorov complexity. In this paper we propose a novel complexity metric, also grounded in information theory, but calculated via Shannon's entropy equations. This is used to formulate a directly and efficiently computable metric for the structural difference between unordered trees. The paper explains the derivation of the metric in terms of information theory, and proves the essential property that it is a distance metric. The property of boundedness means that the metric can be used in contexts such as clustering, where second-order comparisons are required. The distance metric property means that the metric can be used in the context of similarity search and metric spaces in general, allowing trees to be indexed and stored within this domain. We are not aware of any other tree similarity metric with these properties.