Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Initial results on an MMSE precoding and equalisation approach to MIMO PLC channels

Weiss, Stephan and Moret, Nicola and Millar, Andrew Paul and Tonello, Andrea and Stewart, Robert (2011) Initial results on an MMSE precoding and equalisation approach to MIMO PLC channels. In: 15th IEEE International Symposium on Power Line Communications and its Applications 2011, 2011-04-03 - 2011-04-06, University of Udine.

[img]
Preview
PDF
weiss11a.pdf
Preprint

Download (732kB) | Preview

Abstract

This paper addresses some initial experiments using polynomial matrix decompositions to construct MMSE precoders and equalisers for MIMO power line communications (PLC) channels. The proposed scheme is based on a Wiener formulation based on polynomial matrices, and recent results to design and implement such systems with polynomial matrix tools. Applied to the MIMO PLC channel, the strong spectral dynamics of the PLC system together with the long impulse responses contained in the MIMO system result in problems, such that diagonlisation and spectral majorisation is mostly achieved in bands of high energy, while low-energy bands can resist any diagonalisation efforts. We introduce the subband approach in order to deal with this problem. A representative example using a simulated MIMO PLC channel is presented.