Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Solid-to-solid biocatalysis: thermodynamic feasibility and energy efficiency

Ulijn, R.V. and Halling, P.J. (2004) Solid-to-solid biocatalysis: thermodynamic feasibility and energy efficiency. Green Chemistry, 6 (9). pp. 488-496. ISSN 1463-9262

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Enzymes can catalyse solid-to-solid condensation reactions in highly concentrated aqueous substrate suspensions. Reaction products precipitate from the reaction mixture and very high conversion yields can be obtained in low volume reactors. Solid-to-solid biocatalysis combines the advantages of using enzymes in aqueous media with the high conversion yields that are typically associated with non-aqueous biocatalysis. In this article, methods are presented for the calculation of the Gibbs free energy changes and heats of reaction of condensation reactions to form amides. The overall enthalpy change of the enzymatic reaction was compared to that of the conventional chemical methods and it was found that the enzymatic reaction produces a third of the heat with better atom efficiency.