Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Molecular dynamics simulations of liquid flow in and around carbon nanotubes

Nicholls, William and Borg, Matthew Karl and Reese, Jason (2010) Molecular dynamics simulations of liquid flow in and around carbon nanotubes. In: ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels: Parts A and B. ASME, USA, pp. 979-985. ISBN 978-0-7918-5450-1

[img] PDF
Reese_JM_Pure_Molecular_dynamics_simulations_of_liquid_flow_in_and_around_carbon_nanotubes_Jun_2011.pdf - Preprint

Download (696kB)

Abstract

Using recently-developed fluid state controllers [1], we apply continuum fluid boundary conditions to molecular dynamics (MD) simulations of liquid argon flow past a carbon nanotube (CNT) and through a CNT membrane. Advantages of this method are that it: is not dependent on periodic boundary conditions; can accurately generate fluid transport without any geometrical constraints; and is capable of performing as an essential part of a hybrid continuum/atomistic technique. In our simulations, a pressure gradient is applied across a CNT membrane by controlling the densities of two reservoirs located either side of the membrane. Fluid velocity and density distributions are reported and compared to other published data where possible.