Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A plausible hydrological scenario for the Bolling-Allerod atmospheric methane increase

Kalin, R.M. and Jirikowic, J.L. (1996) A plausible hydrological scenario for the Bolling-Allerod atmospheric methane increase. Holocene, 6 (1). pp. 111-118.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The glacial record has shown that atmospheric methane concentrations have fluctuated in the past, particularly during the Bolling-Allerod interstadial. We used an inverse photochemical carbon-cycle model to interpret the magnitude of effect that glacial-interglacial atmospheric methane variations have on the global carbon cycle. The results of this modelling suggest that an observed variation in atmospheric C-14 during this time period may be the result of oxidation of the increased atmospheric methane. We re-examine methane clathrate in palaeosols as a potential source of the methane, and the influence of deglaciation and subsequent heat transport from advecting groundwater in these sediments may be a plausible mechanism by which atmospheric CH4 concentrations abruptly increased during the Bolling-Allerod.