A plausible hydrological scenario for the Bolling-Allerod atmospheric methane increase

Kalin, R.M. and Jirikowic, J.L. (1996) A plausible hydrological scenario for the Bolling-Allerod atmospheric methane increase. Holocene, 6 (1). pp. 111-118. (https://doi.org/10.1177/095968369600600114)

Full text not available in this repository.Request a copy

Abstract

The glacial record has shown that atmospheric methane concentrations have fluctuated in the past, particularly during the Bolling-Allerod interstadial. We used an inverse photochemical carbon-cycle model to interpret the magnitude of effect that glacial-interglacial atmospheric methane variations have on the global carbon cycle. The results of this modelling suggest that an observed variation in atmospheric C-14 during this time period may be the result of oxidation of the increased atmospheric methane. We re-examine methane clathrate in palaeosols as a potential source of the methane, and the influence of deglaciation and subsequent heat transport from advecting groundwater in these sediments may be a plausible mechanism by which atmospheric CH4 concentrations abruptly increased during the Bolling-Allerod.

ORCID iDs

Kalin, R.M. ORCID logoORCID: https://orcid.org/0000-0003-3768-3848 and Jirikowic, J.L.;