Investigation of molybdenum-(resorcinol–formaldehyde) (Mo-RF) electrode for alkaline electrolyser operation
Hall, Peter (2011) Investigation of molybdenum-(resorcinol–formaldehyde) (Mo-RF) electrode for alkaline electrolyser operation. International Journal of Hydrogen Energy, 36 (13). pp. 7791-7798. ISSN 0360-3199 (https://doi.org/10.1016/j.ijhydene.2011.01.107)
Full text not available in this repository.Request a copyAbstract
The use of zero-gap cell geometry and development of low cost electrodes are some of several attempts on reducing cost and increasing efficiency of electrolytic hydrogen production. This study involves the synthesis of an electrode consisting of resorcinol–formaldehyde (RF) carbon aerogels of high surface area (>700 m2/g) and nano-pore sizes (4 nm) thermally deposited on molybdenum metal. The hydrogen evolution reaction (HER) characteristics of the Mo-RF electrode involving an intermediate ‘spectator metal-oxo’ compound and its Volmer–Heyrovsky electro-catalyst property are described. The physical and morphological structure of the Mo-RF has been shown through SEM images thus confirming the effectiveness of the synthesis method. Polarisation measurement of the Mo-RF electrode in 30% (by vol) KOH solution at 298 K indicates its potential applications in alkaline electrolysers. It is anticipated that the use of Mo-RF electrode offers economic benefit of reduced capital cost investment compared with other electrodes such as Pt–C previously used in electrolysers.
-
-
Item type: Article ID code: 31941 Dates: DateEventJuly 2011Published3 March 2011Published OnlineSubjects: Technology > Chemical engineering Department: Faculty of Engineering > Chemical and Process Engineering Depositing user: Pure Administrator Date deposited: 16 Nov 2011 15:12 Last modified: 07 Sep 2024 01:53 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/31941