Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

A protective role for IL-6 during early infection with Toxoplasma gondii

Jebbari, H and Roberts, C W and Ferguson, D J P and Bluethmann, H and Alexander, J and Roberts, Craig (1998) A protective role for IL-6 during early infection with Toxoplasma gondii. Parasite Immunology, 20 (5). pp. 231-239. ISSN 0141-9838

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

IL-6 deficient mice were found to be signifcantly more susceptible to peroral infection with Toxoplasma gondii than their wild-type counterparts as measured by survival, brain cyst burdens and brain pathology at 28 days postinfection. The physical manifestations of disease, such as weight loss, were not observed in IL-6 deficient animals until at least seven days later than such changes occurred in wild-type mice. During this early stage of infection IL-6+/+ but not IL-6-/- mice mounted a peripheral blood neutrophilia. Furthermore, between 6-8 days post-infection there was a significant increase in plasma IFN-gamma levels in wild-type but not IL-6 deficient mice. Not until days 18-23 post-infection, concurrent with the majority of deaths in IL-6-/- mice, were plasma IFN-gamma levels substantially and significantly raised in IL-6-/- mice. At this time not only were these plasma IFN-gamma levels 20-fold higher than background but eight-fold greater than peak (6-8 clays post-infection) IFN-gamma levels in IL-6+/+ mice. IFN-gamma dependent parasite specific IgG2a levels were also significantly higher in IL-6-/- mice over this period and thereafter Overall the evidence suggests that in the absence of IL-6 mice are unable to initiate a rapid proinflammatory response against T. gondii, which allows increased parasite growth. Increased mortality in IL-6-/- mice may be directly due to this increased parasite burden and the excessive inflammatory response this induces three weeks post-infection.