Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

The effects of temperature on the performance of electrochemical double layer capacitors

Fletcher, S. I. and Sillars, F. B. and Carter, R. C. and Cruden, A. J. and Mirzaeian, M. and Hudson, N. E. and Parkinson, J. A. and Hall, P. J. and Hall, Peter (2010) The effects of temperature on the performance of electrochemical double layer capacitors. Journal of Power Sources, 195 (21). pp. 7484-7488. ISSN 0378-7753

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An electrochemical double layer capacitor test cell containing activated carbon xerogel electrodes and ionic liquid electrolyte was tested at 15, 25 and 40 degrees C to examine the effect of temperature on electrolyte resistance (R-S) and equivalent series resistance (ESR) measured using impedance spectroscopy and capacitance using charge/discharge cycling. A commercial 10 F capacitor was used as a comparison. Viscosity, ionic self-diffusion coefficients and differential scanning calorimetry measurements were used to provide an insight into the behaviour of the 1,2-dimethy1-3-propylimdazolium electrolyte. Both R-S and ESR decreased with increasing temperature for both capacitors. Increasing the temperature also increased the capacitance for both the test cell and the commercial capacitor but proportionally more for the test cell. An increase in temperature decreased the ionic liquid electrolyte viscosity and increased the self-diffusion coefficients of both the anion and the cation indicating an increase in dissociation and increase in ionic mobility. (C) 2010 Elsevier B.V. All rights reserved.