Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

The potential use of silicon isotope composition of biogenic silica as a proxy for environmental change

Leng, M J and Swann, G. E. A. and Hodson, M J and Tyler, J J and Patwardhan, Siddharth and Sloane, H J (2009) The potential use of silicon isotope composition of biogenic silica as a proxy for environmental change. Silicon, 1 (2). pp. 65-77. ISSN 1876-990X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Silicon isotope geochemistry is a relatively new branch of environmental change research. Here we review the recent developments in the preparation of materials, analytical methods and applications of stable silicon isotope geochemistry in the most common types of biogenic silica currently being analysed. These materials are: diatom, radiolarian and siliceous sponges in lake and ocean sediments and plant phytoliths which are preserved in soils. Despite analyses of Si isotopes being carried out on rocks and minerals since the 1950's and the increasingly widespread use of Si isotopes since the 1990's, to date only a relatively small number of studies have applied Si isotope ratios to environmental change. In lake and ocean sediments the analysis of Si isotope ratios from biogenic materials has the potential to provide an important source of palaeoenvironmental information, especially where carbonates are not preserved. In plants and soils few studies have used Si isotopes, but important advances have recently been made in the understanding within plant fractionations. These may be useful in the application of Si isotopes in phytoliths to archaeological and palaeoenvironmental contexts.