Reinforcement of poly(dimethylsiloxane) elastomers using bioinspired silica
Taori, V P and Hassan, M K and Patwardhan, S V and Mark, J E and Clarson, S J (2004) Reinforcement of poly(dimethylsiloxane) elastomers using bioinspired silica. Abstracts of papers - American Chemical Society, 227. U443-U443. ISSN 0065-7727
Full text not available in this repository.Request a copyAbstract
Elastomers typically require the incorporation of reinforcing fillers in order to improve their mechanical properties. Fumed and precipitated silica are made on an industrial scale for many applications including elastomer reinforcement. We have shown recently that biological and synthetic macromolecules can generate new silica structures using a bioinspired route. Herein we have incorporated bioinspired silica fillers into poly(dimethylsiloxane) elastomers. The equilibrium stress-strain characteristics of the elastomers were then determined as a function of filler loading. The thermal characteristics, in particular glass transition temperature and melting point of the elastomers were characterized using differential scanning calorimetry and the morphology of the samples and the filler dispersion were characterized using Scanning Electron Microscopy . Although spherical silica particles were used here, this bioinspired synthetic route also enables highly asymmetric silica structures to be prepared. This methodology therefore offers the interesting possibility of preparing hybrid systems where the properties are highly anisotropic
-
-
Item type: Article ID code: 31558 Dates: DateEvent28 March 2004PublishedSubjects: Technology > Chemical engineering Department: Faculty of Engineering > Chemical and Process Engineering Depositing user: Pure Administrator Date deposited: 12 Aug 2011 14:16 Last modified: 11 Nov 2024 09:46 URI: https://strathprints.strath.ac.uk/id/eprint/31558