Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Ratchet limits for a crack in a welded pipe subjected to a cyclic temperature load an a constant mechanical load

Li, Tianbai and Chen, Haofeng and Chen, Weihang and Ure, James Michael (2011) Ratchet limits for a crack in a welded pipe subjected to a cyclic temperature load an a constant mechanical load. In: ASME Pressure Vessels and Piping Conference, 2011-07-17 - 2011-07-21.

[img] PDF
Chen_HF_Pure_Ratchet_limits_for_a_crack_in_a_welded_pipe_subjected_to_a_cyclic_temperature_load_and_a_constant_mechanical_load_17_Jul_2011.pdf - Preprint

Download (518kB)

Abstract

This paper presents the ratchet limit analysis of a pipe with a symmetric crack in a mismatched weld by using the extended Linear Matching Method (LMM). Two loading conditions are considered: i) a cyclic temperature load and a constant internal pressure; and ii) a cyclic temperature load and a constant axial tension. Individual effects of i) the geometry of the Weld Metal (WM), ii) the size of the crack, iii) the location of the crack and iv) the yield stress of WM on the ratchet limits, maximum temperature ranges to avoid ratchetting and limit loads are investigated. Influence functions of the yield stress of WM on the maximum temperature ranges and limit loads are generated. The results confirm the applicability of the extended LMM to the cracked welded pipe.