Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Performance of a nongasketed flange joint combined internal pressure and bending loading

Abid, M. and Awan, A.W. and Nash, David (2010) Performance of a nongasketed flange joint combined internal pressure and bending loading. Journal of Engineering Mechanics, 136 (12). pp. 1519-1527.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Performance of a bolted flange joint is characterized mainly due to its “strength” and “sealing capability.” A number of analytical and experimental studies have been conducted to study these characteristics only under internal pressure loading. A very limited amount of work is found in the literature under combined internal pressure and bending loading. Due to the ignorance of this external loading, i.e., bending loading, the optimized performance of the bolted flange joint cannot be achieved. The present design codes do not address the effects of bending loading on the structural integrity and sealing ability. To investigate joint strength and sealing capability under combined loading, an extensive comparative experimental and numerical study of a nongasketed flange joint is carried out and overall joint performance and behavior is discussed. Actual joint load capacity is determined under both the design and proof test pressure with maximum additional external bending loading that can be applied for safe joint performance. In addition, as experimentally it is impossible to test different flange joint sizes under combined loading application, hence finite element model developed and verified with the experimental results, presented in this paper can be used as base to study the behavior for different nongasketed flange joint sizes for different classes under combined pressure and bending loading.