Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Realizing predicted crystal structures at extreme conditions : the low-temperature and high-pressure crystal structures of 2-chlorophenol and 4-fluorophenol

Oswald, I D H and Allan, D R and Day, G M and Motherwell, W D S and Parsons, S (2005) Realizing predicted crystal structures at extreme conditions : the low-temperature and high-pressure crystal structures of 2-chlorophenol and 4-fluorophenol. Crystal Growth and Design, 5 (3). pp. 1055-1071. ISSN 1528-7483

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A crystal of 2-chlorophenol was grown from the liquid at ambient pressure by laser-assisted zone refinement; 4-fluorophenol was crystallized from ethanol. Different polymorphs were obtained at high pressure by compression of the liquids in a Merrill-Bassett diamond-anvil cell (crystallization pressures 0.12 and 0.28 GPa, respectively). The structures of all phases are characterized by OH---OH hydrogen-bond formation. In the ambient-pressure polymorph of 2-chlorophenol, a hydrogen-bonded chain is formed about a 32 screw-axis; the ambient-pressure phase of 4-fluorophenol contains hexameric rings located on 3 sites. In crystallizing in high-symmetry space groups, these two compounds conform to typical behavior for bulky monoalcohols. By contrast, at high-pressure both compounds form zigzag chains disposed about 21 screw-axes, behavior more characteristic of small monoalcohols. The halophenol moiety thus behaves as a bulky group at ambient pressure but a small group at high pressure. We show that Crystal Structure Prediction methodologies reproduce all four phases, even though the potentials used were developed using ambient-pressure data. This is especially encouraging as the ambient-pressure phase of 2-chlorophenol contains three molecules in the asymmetric unit, while the high-pressure phase of 4-fluorophenol is disordered.