Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses

McKenna, P. and Robinson, A. P. L. and Neely, D. and Desjarlais, M. P. and Carroll, D. C. and Quinn, M. N. and Yuan, X. H. and Brenner, C. M. and Burza, M. and Coury, M. and Gallegos, P. and Gray, R. J. and Lancaster, K. L. and Li, Y. T. and Lin, X. X. and Tresca, O. and Wahlstrom, C. -G. (2011) Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses. Physical Review Letters, 106 (18). ISSN 0031-9007

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effect of lattice structure on the transport of energetic (MeV) electrons in solids irradiated by ultraintense laser pulses is investigated using various allotropes of carbon. We observe smooth electron transport in diamond, whereas beam filamentation is observed with less ordered forms of carbon. The highly ordered lattice structure of diamond is shown to result in a transient state of warm dense carbon with metalliclike conductivity, at temperatures of the order of 1-100 eV, leading to suppression of electron beam filamentation.