Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

X-ray emission from comets and nonmagnetic planets. Theory and comparison with CHANDRA observations

Shapiro, V. D. and Bingham, R. and Kellett, B. J. and Quest, K. and Mendis, D. A. and Bryans, P. and Torney, M. and Summers, H. P. (2005) X-ray emission from comets and nonmagnetic planets. Theory and comparison with CHANDRA observations. Physica Scripta, T116. pp. 83-87. ISSN 0031-8949

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Mass loading of the solar wind by newly created cometary photoions as well as counterstreaming fluxes of protons in the mantle regions (at the ionospheric boundaries) of nonmagnetic planets (Mars, Venus) result in the modified two stream instability (MTSI) and excitation of the intense lower hybrid wave turbulence. Electrons are efficiently energized by these waves in the magnetic field aligned direction up to KeV energies (confirmed by in situ observations) and interacting with cometary or planetary atmospheres producing X-Ray emission by combination of Bremsstrahlung and line K-shell radiation. Analytical study of the nonlinear evolution of MTSI as well as numerical simulations of instability development in the mantle regions of nonmagnetic planets has been performed and it basically confirms the scenario of electron acceleration. Using the above described mechanism of X-ray emission produced in impacts of energetic electrons with ions and neutrals we employed ADAS-atomic data code to analyze X-ray spectrum emitted by comet Linear and obtained a good fit with recent CHANDRA observations. The theoretical model also predicts strong X-ray emission from nonmagnetic planets such as Mars and Venus.