pH tracking of silica hydrogel nanoparticle growth
Cleary, Alison and Karolin, Jan and Birch, David J. S. (2006) pH tracking of silica hydrogel nanoparticle growth. Applied Physics Letters, 89 (11). p. 113125. ISSN 0003-6951
Full text not available in this repository.Request a copy from the Strathclyde authorAbstract
The authors show that pH increase, due to removal by condensation of silicic acid, correlates with nanoparticle growth during the initial stages of silica hydrogel formation and becomes constant at a time t(pH), the point when other particle growth mechanisms dominate. Absorption of common phthalein indicators is shown to allow effectively instantaneous tracking of the pH and nanoparticle size in alkaline and acidic hydrogels. Particle sizes are calibrated using the hydrodynamic radius determined from the fluorescence anisotropy decay. Tracking pH complements fluorescence anisotropy nanometrology by offering a lower cost, speedier, and simpler method of studying particle growth during silica hydrogel fabrication. (c) 2006 American Institute of Physics.
Creators(s): |
Cleary, Alison ![]() ![]() | Item type: | Article |
---|---|
ID code: | 31131 |
Keywords: | pH, fluorescence, condensation, particle size, nanoparticles, silicon compounds, gels, Physics, Physics and Astronomy (miscellaneous) |
Subjects: | Science > Physics |
Department: | Faculty of Engineering > Electronic and Electrical Engineering Faculty of Science > Physics |
Depositing user: | Pure Administrator |
Date deposited: | 23 Jun 2011 15:47 |
Last modified: | 20 Jan 2021 19:20 |
URI: | https://strathprints.strath.ac.uk/id/eprint/31131 |
Export data: |