Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Optical stability of the Cr3+ centres in codoped stoichiometric and congruent LiNbO3 : Cr : Mg

Han, T. P. J. and Jaque, Francisco (2007) Optical stability of the Cr3+ centres in codoped stoichiometric and congruent LiNbO3 : Cr : Mg. Optical Materials, 29 (8). pp. 1041-1043.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The optical stability of the R-lines and broad band associated with the Cr3+ ions has been studied in codoped congruent and near stoichiometric LiNbO3:Cr:Mg crystals. It has been found that the E-2 -> (4)A(2) transition of the Cr3+ ions located in Nb5+ sites, [Cr](Nb), can be bleached under optical excitation of the high energy broad absorption band luminescence whereas the emission from the same transition but ascribed to Cr3+ ions located in Li+ sites, [Cr](Li), is optically stable. At variance, the broad emission associated with the T-4(2) -> (4)A(2) vibronic transition ascribed to these centres is optically stable. The recovery temperature for the optical bleaching has been found to be 150 K, and has been correlated to Nb4+ electron traps located in Nb5+ antisite position. The different optical stability found for the R-lines and broad band emission associated with the [Cr](Nb) sites confirm the existence of two [Cr]Nb centres with low and high crystal field, respectively. (c) 2006 Elsevier B.V. All rights reserved.