Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Observation of saturation and rapid passage signals in the 10.25 micron spectrum of ethylene using a frequency chirped quantum cascade laser

McCulloch, M. T. and Duxbury, G. and Langford, N. (2006) Observation of saturation and rapid passage signals in the 10.25 micron spectrum of ethylene using a frequency chirped quantum cascade laser. Molecular Physics, 104 (16-17). pp. 2767-2779. ISSN 0026-8976

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Rapid passage signals exhibiting saturation effects have been observed when a low-pressure sample of ethylene, within a multiple pass absorption cell, is subjected to radiation from a repetitively pulsed 10.25 micron quantum-cascade laser. Within each pulse the laser frequency sweeps 36GHz from high to low frequency in a time of 140 ns. At the low gas pressures, less than 20 mTorr, in the absorption cell the sweep rate through a Doppler-broadened absorption line (ca. 0.5 ns), is much faster than the collisional relaxation time of the ethylene and this leads to rapid passage effects. Examples are given of the complex rapid passage signals observed in pure and nitrogen broadened spectra. The rapid passage effects, which lead to the variety of the observed signals, have been modelled by numerical solution of the coupled Maxwell-Bloch equations for four sets of two-level systems.