Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Competition of pattern forming instabilities due to phase front curvature in an optical system

Huneus, F and Lange, W and Ackemann, T (2006) Competition of pattern forming instabilities due to phase front curvature in an optical system. Physical Review E, 73 (1). -. ISSN 1539-3755

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we analyze experimentally and theoretically the competition between two pattern forming instabilities in a single mirror feedback scheme with sodium vapor as the nonlinear medium. Two types of structures with different transverse wave numbers are observed experimentally, if the spatial phase modulation of the light field is varied. This phenomenon results from the combination of a nonlinear self-lensing effect on the one hand and of the externally controlled phase front curvature of the light field on the other. A linear stability analysis yields two instabilities whose length scales match quite well the experimental findings. Further analysis reveals the mechanism of length-scale selection in this system and demonstrates the possibly crucial role of phase front curvature in optical pattern formation.