Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Preliminary design of multiple gravity-assist trajectories

Vasile, Massimiliano and De Pascale, Paolo (2006) Preliminary design of multiple gravity-assist trajectories. Journal of Spacecraft and Rockets, 43 (4). pp. 794-805. ISSN 0022-4650

[img] PDF
Vasilem_Pure_Preliminary_design_of_multiple_gravity_assist_trajectories_2006.pdf
Preprint

Download (2MB)

Abstract

In this paper the preliminary design of multiple gravity-assist trajectories is formulated as a global optimization problem. An analysis of the structure of the solution space reveals a strong multimodality, which is strictly dependent on the complexity of the model. On the other hand it is shown how an oversimplification could prevent finding potentially interesting solutions. A trajectory model, which represents a compromise between model completeness and optimization problem complexity is then presented. The exploration of the resulting solution space is performed through a novel global search approach, which hybridizes an evolutionary based algorithm with a systematic branching strategy. This approach allows an efficient exploration of complex solution domains by automatically balancing local convergence and global search. A number of difficult multiple gravity-assist trajectory design cases demonstrates the effectiveness of the proposed methodology.