Speech enhancement using adaptive empirical mode decomposition
Chatlani, N. and Soraghan, J. J.; (2009) Speech enhancement using adaptive empirical mode decomposition. In: Digital Signal Processing, 2009 16th International Conference on. IEEE, Santorini, Greece. ISBN 978-1-4244-3297-4 (https://doi.org/10.1109/ICDSP.2009.5201120)
Full text not available in this repository.Request a copyAbstract
Speech enhancement is performed in a wide and varied range of instruments and systems. In this paper, a novel approach to speech enhancement using adaptive empirical mode decomposition (SEAEMD) is presented. Spectral analysis of non-stationary signals can be performed by employing techniques such as the STFT and the Wavelet transform (WT), which use predefined basis functions. Empirical mode decomposition (EMD) performs very well in such environments. EMD decomposes a signal into a finite number of data-adaptive basis functions, called intrinsic mode functions (IMFs). The new SEAEMD system incorporates this multi-resolution approach with adaptive noise cancellation (ANC) for effective speech enhancement on an IMF level, in stationary and non-stationary noise environments. A comparative performance study is included that compares the competitive method of conventional ANC to the robust SEAEMD system. The results demonstrate that the new system achieves significantly improved speech quality with a lower level of residual noise.
ORCID iDs
Chatlani, N. and Soraghan, J. J. ORCID: https://orcid.org/0000-0003-4418-7391;-
-
Item type: Book Section ID code: 30853 Dates: DateEvent5 July 2009PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 06 May 2011 11:43 Last modified: 04 Jan 2025 18:13 URI: https://strathprints.strath.ac.uk/id/eprint/30853