Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12

Cussen, Edmund and Yip, Thomas Wai Sing and O'Neil, Gemma and O'Callaghan, Michael P. (2011) A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12. Journal of Solid State Chemistry, 184 (2). pp. 470-475. ISSN 0022-4596

Full text not available in this repository.Request a copy from the Strathclyde author


The structures of new phases Li6CaLa2Sb2O12 and Li6.4Ca1.4La2Sb2O12 have been characterised using neutron powder diffraction. Rietveld analyses show that both compounds crystallise in the space group la3̄d and contain the lithium cations in a complex arrangement with occupational disorder across oxide tetrahedra and distorted oxide octahedra, with considerable positional disorder in the latter. Variable temperature neutron diffraction experiments on Li6.4Ca1.4La2Sb2O12 show the structure is largely invariant with only a small variation in the lithium distribution as a function of temperature. Impedance spectroscopy measurements show that the total conductivity of Li6CaLa2Sb2O12 is several orders of magnitude smaller than related lithium-stuffed garnets with σ=10−7 S cm−1 at 95 °C and an activation energy of 0.82(3) eV. The transport properties of the conventional garnets Li3Gd3Te2O12, Li3Tb3Te2O12, Li3Er3Te2O12 and Li3Lu3Te2O12 have been evaluated and consistently show much lower values of conductivity, σ≤4.4×10−6 S cm−1 at 285 °C and activation energies in the range 0.77(4)≤Ea/eV≤1.21(3).