A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12

Cussen, Edmund and Yip, Thomas Wai Sing and O'Neil, Gemma and O'Callaghan, Michael P. (2011) A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12. Journal of Solid State Chemistry, 184 (2). pp. 470-475. ISSN 0022-4596

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The structures of new phases Li6CaLa2Sb2O12 and Li6.4Ca1.4La2Sb2O12 have been characterised using neutron powder diffraction. Rietveld analyses show that both compounds crystallise in the space group la3̄d and contain the lithium cations in a complex arrangement with occupational disorder across oxide tetrahedra and distorted oxide octahedra, with considerable positional disorder in the latter. Variable temperature neutron diffraction experiments on Li6.4Ca1.4La2Sb2O12 show the structure is largely invariant with only a small variation in the lithium distribution as a function of temperature. Impedance spectroscopy measurements show that the total conductivity of Li6CaLa2Sb2O12 is several orders of magnitude smaller than related lithium-stuffed garnets with σ=10−7 S cm−1 at 95 °C and an activation energy of 0.82(3) eV. The transport properties of the conventional garnets Li3Gd3Te2O12, Li3Tb3Te2O12, Li3Er3Te2O12 and Li3Lu3Te2O12 have been evaluated and consistently show much lower values of conductivity, σ≤4.4×10−6 S cm−1 at 285 °C and activation energies in the range 0.77(4)≤Ea/eV≤1.21(3).