Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Gyro-BWO experiments using a helical interaction waveguide

He, W. and Ronald, K. and Young, A.R. and Cross, A.W. and Phelps, A.D.R. and Whyte, C.G. and Rafferty, E.G. and Thomson, J. and Robertson, C.W. and Speirs, David and Samsonov, S.V. and Bratman, V.L. and Denisov, G.G. (2005) Gyro-BWO experiments using a helical interaction waveguide. IEEE Transactions on Electron Devices, 52 (5). pp. 839-844. ISSN 0018-9383

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

A helically corrugated waveguide was used for a gyrotron backward-wave oscillator (gyro-BWO) experiment. A thermionic cathode was used to produce an electron beam of 90-215 keV in energy, 2-3 A in current, and pitch alpha of up to 1.6. The oscillator achieved high-efficiency frequency-tunable operation. At a fixed beam voltage of 185 kV and a current of 2 A, the output frequency was tuned by adjusting the magnetic field in the interaction cavity. A maximum power of 62 kW and a 3-dB frequency-tuning band of 8.0-9.5 GHz (17% relative tuning range) with a maximum electronic efficiency of 16.5% were measured. In addition, the interaction frequency could be tuned by varying the electron beam energy. At a fixed cavity magnetic field of 0.195 T, the output frequency and power from the gyro-BWO were measured as a function of tuning electron beam energy while the beam current was maintained at 2.5 A. A 3-dB relative frequency tuning range of 8% was measured when the electron beam voltage was changed from 215 to 110 kV.