Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Broad energy spectrum of Laser-accelerated protons for spallation-related physics

McKenna, P. and Ledingham, K.W.D. and Shimizu, S. and Yang, J.M. and Robson, L. and McCanny, T. and Galy, J. and Magill, J. and Clarke, R.J. and Neely, D. and Norreys, P.A. and Singhal, R.P. and Krushelnick, K. and Wei, M.S. (2005) Broad energy spectrum of Laser-accelerated protons for spallation-related physics. Physical Review Letters, 94 (8). 084801-1. ISSN 0031-9007

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A beam of MeV protons, accelerated by ultraintense laser-pulse interactions with a thin target foil, is used to investigate nuclear reactions of interest for spallation physics. The laser-generated proton beam is shown (protons were measured) to have a broad energy distribution, which closely resembles the expected energy spectrum of evaporative protons (below 50 MeV) produced in GeV-proton-induced spallation reactions. The protons are used to quantify the distribution of residual radioisotopes produced in a representative spallation target (Pb), and the results are compared with calculated predictions based on spectra modeled with nuclear Monte Carlo codes. Laser-plasma particle accelerators are shown to provide data relevant to the design and development of accelerator driven systems.