Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Laser-driven photo-transmutation of 129I - a long-lived nuclear waste product

Ledingham, K.W.D. and Magill, J. and McKenna, P. and Yang, J. and Galy, J. and Schenkel, R. and Rebizant, J. and McCanny, T. and Shimizu, S. and Robson, L. and Singhal, R.P. and Wei, M.S. and Mangles, S.P.D. and Nilson, P. and Krushelnick, K. and Clarke, R.J. and Norreys, P.A. (2003) Laser-driven photo-transmutation of 129I - a long-lived nuclear waste product. Journal of Physics D: Applied Physics, 36 (18). L79-L82. ISSN 0022-3727

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Intense laser-plasma interactions produce high brightness beams of gamma rays, neutrons and ions and have the potential to deliver accelerating gradients more than 1000 times higher than conventional accelerator technology, and on a tabletop scale. This paper demonstrates one of the exciting applications of this technology, namely for transmutation studies of long-lived radioactive waste. We report the laser-driven photo-transmutation of long-lived 129I with a half-life of 15.7 million years to 128I with a half-life of 25 min. In addition, an integrated cross-section of 97 ± 40 mbarns for the reaction 129I(γ, n)128I is determined from the measured ratio of the (γ, n) induced 128I and 126I activities. The potential for affordable, easy to shield, tabletop laser technology for nuclear transmutation studies is highlighted.