Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Superradiant linear Raman amplification in plasma using a chirped pump pulse

Ersfeld, B. and Jaroszynski, D.A. (2005) Superradiant linear Raman amplification in plasma using a chirped pump pulse. Physical Review Letters, 95 (16). pp. 165002-1. ISSN 0031-9007

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A theoretical and numerical investigation of small-signal Raman backscattering from a chirped pump pulse in plasma shows that an ultrashort probe pulse will grow superradiantly, i.e., with an amplitude that scales with the propagation length while contracting self-similarly. These features are commonly associated with the nonlinear stages of Raman amplification in the pump depletion and Compton regimes. We show that the superradiant scaling results in very broad-bandwidth amplification due to gain distributed in frequency as well as spatially. Since different frequencies excite the plasma at different positions, wave breaking is avoided, and prepulses and pedestals are substantially suppressed. Linear chirped pulse amplification in plasma could provide a very broad-bandwidth alternative to solid state laser amplifiers, potentially usable for optical pulses a few cycles in duration.