A Vlasov approach to bunching and selfordering of particles in optical resonators
Griesser, T. and Ritsch, H. and Hemmerling, M. and Robb, G. R. M. (2010) A Vlasov approach to bunching and selfordering of particles in optical resonators. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 58 (3). pp. 349-368. ISSN 1434-6060 (https://doi.org/10.1140/epjd/e2010-00113-9)
Full text not available in this repository.Request a copyAbstract
We develop a Vlasov type continuum density description for the coupled nonlinear dynamics of polarizable particles moving in the light field of a high Q optical resonator. The intracavity light field, which exerts optical forces on the particles, depends itself on the dynamics of the particle density, which constitutes a time dependent refractive index. This induces mode frequency shifts, losses and coupling. For typical geometries we find solid analytic criteria for the stability of an initial homogeneous particle density for a wide class of initial velocity distributions including thermal distributions. These agree with previously found bunching and self-ordering instabilities but are extended to a wider range of parameters and initial conditions. Using a linear perturbation expansion we calculate the growth exponents of small density perturbations in the parameter region beyond this instability threshold. Numerical solutions of the full equations as well as simulations of the underlying many particle trajectories confirm these results. In addition the equations allow to extract analytical scaling laws to extrapolate cavity cooling and selfordering dynamics to higher particle numbers.
ORCID iDs
Griesser, T., Ritsch, H., Hemmerling, M. and Robb, G. R. M. ORCID: https://orcid.org/0000-0002-3004-5926;-
-
Item type: Article ID code: 30214 Dates: DateEventJune 2010PublishedSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 11 May 2011 10:09 Last modified: 11 Nov 2024 09:42 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/30214