Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Photon frequency up-shifting by an amplified plasma density wake due to two co-propagating laser pulses

Raj, Gaurav and Islam, M. R. and Ersfeld, B. and Jaroszynski, D. A. (2009) Photon frequency up-shifting by an amplified plasma density wake due to two co-propagating laser pulses. In: Conference on Harnessing Relativistic Plasma Waves as Novel Radiation Sources From Terahertz to X-Rays and Beyond, 2009-04-21 - 2009-04-23.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An analytical study of significant photon acceleration (frequency up-shift) in a plasma density wake produced by two laser pulses in the mildly relativistic and linearized regime is presented. The wake amplitude is amplified and its phase controlled using two coaxially, co-propagating laser pulses, which are considered to be identical but separated by a fixed time. A third probe pulse, with a variable delay, is considered as ``test particle'' or quasi-photon propagating through the amplified density wake, which experiences significant photon acceleration because of the local temporal and spatial variation of the permittivity. The evolution of the ``photon'' is studied using Hamiltonian theory. The significant frequency up-shift is much larger than that produced by the wake of a single relativistic laser pulse in the highly relativistic nonlinear wake regime. Our study demonstrates that the inter-pulse separation between the ``controlling'' pulse and the ``driver'' pulse, producing the amplified density wake, can provide an additional degree of freedom for tuning the maximum up-shift of the probe photon frequency.