Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein

Saxl, Tania and Khan, Faaizah and Ferla, Matteo and Birch, David and Pickup, John (2011) A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst, 136 (5). pp. 968-972. ISSN 0003-2654

[img]
Preview
PDF
2297840.pdf
Final Published Version

Download (232kB) | Preview

Abstract

Alternative, non-electrochemistry-based technologies for continuous glucose monitoring are needed for eventual use in diabetes mellitus. As part of a programme investigating fluorescent glucose sensors, we have developed fibre-optic biosensors using glucose/galactose binding protein (GBP) labelled with the environmentally sensitive fluorophore, Badan. GBP-Badan was attached via an oligohistidine-tag to the surface of Ni-nitrilotriacetic acid (NTA)-functionalized agarose or polystyrene beads. Fluorescence lifetime increased in response to glucose, observed by fluorescence lifetime imaging microscopy of the GBP-Badan-beads. Either GBP-Badan agarose or polystyrene beads were loaded into a porous chamber at the end of a multimode optical fibre. Fluorescence lifetime responses were recorded using pulsed laser excitation, high speed photodiode detection and time-correlated single-photon counting. The maximal response was at 100 mM glucose with an apparent K-d of 13 mM (agarose) and 20 mM (polystyrene), and good working-day stability was demonstrated. We conclude that fluorescence lifetime fibre-optic glucose sensors based on GBP-Badan are suitable for development as clinical glucose monitors.