Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Quasiparticle approach to the modulational instability of drift waves coupling to zonal flows

Trines, R. and Bingham, R. and Silva, L.O. and Mendonça, J.T. and Shukla, P.K. and Mori, W.B. (2005) Quasiparticle approach to the modulational instability of drift waves coupling to zonal flows. Physical Review Letters, 94 (16). pp. 165002-1. ISSN 0031-9007

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The interaction between broadband drift mode turbulence and zonal flows has been studied through the wave-kinetic approach. Simulations have been conducted in which a particle-in-cell representation is used for the quasiparticles, while a fluid model is employed for the plasma. The interactions have been studied in a plasma edge configuration which has applications in both tokamak physics and magnetopause boundary layer studies. Simulation results show the development of a zonal flow through the modulational instability of the drift wave distribution, as well as the existence of solitary zonal flow structures about an ion gyroradius wide, drifting towards steeper relative density gradients.