Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Seamless pressure-deficient water distribution system model

Tanyimboh, Tiku and Templeman, AB (2010) Seamless pressure-deficient water distribution system model. Proceedings of the ICE - Water Management, 163 (8). pp. 389-396. ISSN 1741-7589

[img]
Preview
Text (Tanyimboh-Templeman-ICE-WM-2011-Seamless-pressure-deficient-water-distribution)
Tanyimboh_Templeman_ICE_WM_2011_Seamless_pressure_deficient_water_distribution.pdf
Final Published Version

Download (280kB) | Preview

Abstract

Pressure-deficient conditions are a common occurrence in water distribution systems. These situations require accurate modelling for timely decision making. However, the conventional demand-driven analysis approach to network modelling is unsuitable for operating conditions with insufficient pressure. Increasing emphasis is being placed on the need for water companies to satisfy stringent performance standards for the continuous supply of water to consumers and it is those pressure-deficient operating conditions which are critical in determining whether or not adequate supplies can be provided. It is therefore very unfortunate that the demand-driven analysis method becomes invalid for use in precisely those critical conditions. The aim of this paper is to present a new pressure-dependent demand function to help improve the simulation of pressure-deficient conditions. The proposed function has better computational properties than those in the literature and has been incorporated successfully in the governing equations for water distribution networks. In particular, the proposed function and its derivative do not have the discontinuities that often cause convergence difficulties in the solution of the constitutive equations. A robust Newton–Raphson algorithm was developed to model water distribution systems under both normal and pressure-deficient conditions in a seamless way. Examples which demonstrate the methodology are included.