Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Modelling time-dependent behaviour of Murro test embankment

Karstunen, Minna and Yin, Zhen-Yu (2010) Modelling time-dependent behaviour of Murro test embankment. Geotechnique, 60 (10). pp. 735-749. ISSN 0016-8505

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper investigates the time-dependent behaviour of Murro test embankment in Finland. The embankment was built in 1993 on a soft natural clay deposit, which exhibits large strain anisotropy, destructuration and viscosity. The study is based on extensive experimental data from triaxial and oedometer tests on intact and reconstituted soil samples which shed light on the influence of time on mechanical properties, including testing designed for studying soil anisotropy and destructuration. The interpretation of the results is done in the framework of a recently developed elasto-viscoplastic model EVP-SCLAY1S, which is used to simulate the soft soil deposit coupled with Biot's consolidation theory. The determination of model parameters from the test results demonstrates that the model can be relatively easily used for practical applications. Using these parameters, two-dimensional finite-element analyses have been made as large deformation analysis. The comparisons between calculations and measurements demonstrate that the proposed model can be satisfactorily used to describe the time-dependent behaviour of the embankment on structured clay.