Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Low-cost wireless nanotube composite sensor for damage detection of civil infrastructure

Saafi, Mohamed and Kaabi, L (2009) Low-cost wireless nanotube composite sensor for damage detection of civil infrastructure. Sensors and Transducers, 110 (11). pp. 96-104. ISSN 1726-5479

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a new low-cost wireless nanotube composite sensor for structural damage detection. A cement matrix with networked carbon nanotubes was used to develop an in situ, wireless and embedded sensor for crack detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored wirelessly. As a proof of concept, the wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic loading to evaluate the effect of damage on their response. Results indicated that the wireless response of the embedded nanotube sensors were able to detect the initiation of damage at an early stage of loading.