Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Low-cost wireless nanotube composite sensor for damage detection of civil infrastructure

Saafi, Mohamed and Kaabi, L (2009) Low-cost wireless nanotube composite sensor for damage detection of civil infrastructure. Sensors and Transducers, 110 (11). pp. 96-104. ISSN 1726-5479

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a new low-cost wireless nanotube composite sensor for structural damage detection. A cement matrix with networked carbon nanotubes was used to develop an in situ, wireless and embedded sensor for crack detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored wirelessly. As a proof of concept, the wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic loading to evaluate the effect of damage on their response. Results indicated that the wireless response of the embedded nanotube sensors were able to detect the initiation of damage at an early stage of loading.