Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Local transmission processes and disease-driven host extinctions

Best, A. and Webb, Steven and Antonovics, J. and Boots, M. (2011) Local transmission processes and disease-driven host extinctions. Theoretical Ecology, 5 (2). pp. 211-217.

Full text not available in this repository. Request a copy from the Strathclyde author


Classic infectious disease theory assumes that transmission depends on either the global density of the parasite (for directly transmitted diseases) or its global frequency (for sexually transmitted diseases). One important implication of this dichotomy is that parasite-driven host extinction is only predicted under frequency-dependent transmission. However, transmission is fundamentally a local process between individuals that is determined by their and/or their vector’s behaviour. We examine the implications of local transmission processes to the likelihood of disease-driven host extinction. Local density-dependent transmission can lead to parasite-driven extinction, but extinction is more likely under local frequency-dependent transmission and much more likely when there is active local searching behaviour. Density dependent directly transmitted diseases spread locally can therefore lead to deterministic host extinction, but locally frequency-dependent passive vector-borne diseases are more likely to cause extinctions. However, it is active searching behaviour either by a vector or between sexual partners that is most likely to cause the host to go extinct. Our work emphasises that local processes are essential in determining parasite-driven extinctions, and the role of parasites in the extinction of rare species may have been underplayed due to the classic assumption of global density dependent transmission.