Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Modelling of content-aware indicators for effective determination of shot boundaries in compressed MPEG videos

Chen, J. and Ren, Jinchang and Jiang, J. (2010) Modelling of content-aware indicators for effective determination of shot boundaries in compressed MPEG videos. Multimedia Tools and Applications, 54 (2). pp. 219-239. ISSN 1380-7501

[img]
Preview
PDF (ChenRenJiang-MTA2010-content-aware-indicators)
shot5.pdf - Preprint

Download (926kB) | Preview

Abstract

In this paper, a content-aware approach is proposed to design multiple test conditions for shot cut detection, which are organized into a multiple phase decision tree for abrupt cut detection and a finite state machine for dissolve detection. In comparison with existing approaches, our algorithm is characterized with two categories of content difference indicators and testing. While the first category indicates the content changes that are directly used for shot cut detection, the second category indicates the contexts under which the content change occurs. As a result, indications of frame differences are tested with context awareness to make the detection of shot cuts adaptive to both content and context changes. Evaluations announced by TRECVID 2007 indicate that our proposed algorithm achieved comparable performance to those using machine learning approaches, yet using a simpler feature set and straightforward design strategies. This has validated the effectiveness of modelling of content-aware indicators for decision making, which also provides a good alternative to conventional approaches in this topic.