Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Controllers for imposing continuum-to-molecular boundary conditions in arbitrary fluid flow geometries

Borg, Matthew Karl and Macpherson, Graham and Reese, Jason (2010) Controllers for imposing continuum-to-molecular boundary conditions in arbitrary fluid flow geometries. Molecular Simulation, 36 (10). pp. 745-757. ISSN 0892-7022

[img] PDF
Reese_JM_Pure_Controllers_for_imposing_continuum_to_molecular_boundary_conditionsin_arbitrary_fluid_floww_geometries_Sep_2010.pdf
Preprint

Download (1MB)

Abstract

We present a new parallelised controller for steering an arbitrary geometric region of a molecular dynamics (MD) simulation towards a desired thermodynamic and hydrodynamic state. We show that the controllers may be applied anywhere in the domain to set accurately an initial MD state, or solely at boundary regions to prescribe non-periodic boundary conditions (PBCs) in MD simulations. The mean molecular structure and velocity autocorrelation function remain unchanged (when sampled a few molecular diameters away from the constrained region) when compared with those distributions measured using PBCs. To demonstrate the capability of our new controllers, we apply them as non-PBCs in parallel to a complex MD mixing nano-channel and in a hybrid MD continuum simulation with a complex coupling region. The controller methodology is easily extendable to polyatomic MD fluids.