Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Bilayer lipid membranes from falling droplets

Zagnoni, Michele and Sandison, Mairi and Marius, Phedra and Morgan, Hywel (2009) Bilayer lipid membranes from falling droplets. Analytical and Bioanalytical Chemistry, 393 (6-7). 1601–1605. ISSN 1618-2642

Full text not available in this repository. Request a copy from the Strathclyde author


We describe a system that provides a rapid and simple way of forming suspended lipid bilayers within a microfluidic platform from an aqueous droplet. Bilayer lipid membranes are created in a polymeric device by contacting monolayers formed at a two-phase liquid–liquid interface. Microdroplets, containing membrane proteins, are injected onto an electrode positioned above an aperture machined through a conical cavity that is filled with a lipid–alkane solution. The formation of the BLM depends solely on the device geometry and leads to spontaneous formation of lipid bilayers simply by dispensing droplets of buffer. When an aqueous droplet containing transmembrane proteins or proteoliposomes is injected, straightforward electrophysiology measurements are possible. This method s suitable for incorporation into lab-on-a-chip devices and allows for buffer exchange and electrical measurements.