Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Early Paleogene climate and productivity of the Eastern Equatorial Atlantic, off the western coast of Ghana

Arkaah, A B and Kaminski, M and Ogle, N and Kalin, R M and Atta-Petters, D and Apaalse, L and Wiafe, G and Armah, A K (2006) Early Paleogene climate and productivity of the Eastern Equatorial Atlantic, off the western coast of Ghana. Quaternary International, 148 (1). pp. 3-7.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Early Paleogene warmth is consistent with global observation, although temperature reconstructions were characterized by some degree of uncertainty. In spite of applied corrections, the suggested epifaunal benthic foraminifera maximum temperature range (23.65–30.36 °C) was still above the proposed maximum tropical sea surface temperature of 27 °C, confirming that foraminiferally derived temperatures are strongly dependent on assumptions. Paleoclimate and paleoproductivity of the Eastern Equatorial Atlantic were poorly correlated (R2<0) due to major anomalies. δ13C isotopic signatures have been largely and independently used to resolve discrepancies in eight anomalous depths identified in this study, in view of overlapping δ18O isotopic signatures. The last three anomalies are consistent with the dramatic onset of global cooling which occurred during this interval. The first five still remain anomalous, challenging the conventional view that glacial oceans are more productive than interglacial oceans. Discrepancies in these anomalous depths could have been due to artifacts, preservation biases related to dissolution, and/or shell thickening or encrustation. However, this study suggests extratropical variability and climate dynamics, reflecting regional anomalies due to upwelling or feedback mechanisms of poleward heat transport, which are prevalent in the Eastern Equatorial Atlantic.