Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Determination of the photolysis products of [FeFe]hydrogenase enzyme model systems using ultrafast multidimensional infrared spectroscopy

Stewart, Andrew I. and Wright, Joseph A. and Greetham, Gregory M. and Kaziannis, Spiridon and Santabarbara, Stefano and Towrie, Michael and Parker, Anthony W. and Pickett, Christopher J. and Hunt, Neil T. (2010) Determination of the photolysis products of [FeFe]hydrogenase enzyme model systems using ultrafast multidimensional infrared spectroscopy. Inorganic Chemistry, 49 (20). pp. 9563-9573. ISSN 0020-1669

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Ultrafast transient 2D-IR (T-2D-IR) spectroscopy has been used to study the photolysis products of the [FeFe]hydrogenase enzyme model compound (mu-propanedithiolate)Fe-2(CO)(6) in heptane solution following irradiation at ultraviolet wavelengths. Observation of coupling patterns between the vibrational modes of the photoproduct species formed alongside examination of the appearance time scales of these signals has uniquely enabled assignment of the photoproduct spectrum to a single pentacarbonyl species. Comparison of the vibrational relaxation rate of the photoproduct with that of the parent is consistent with the formation of a solvent adduct at the vacant coordination site, while anisotropy data in conjunction with density functional theory simulations indicates substitution in an axial rather than equatorial position. No firm evidence of additional short-lived intermediates is seen, indicating that the subsequent chemistry of these species is likely to be strongly defined by the nature of the first solvation shell.