Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Control of yaw rate and sideslip in 4-wheel steering cars with actuator constraints

Vilaplana, Miguel A. and Mason, Oliver and Leith, D.J. and Leithead, W.E. (2005) Control of yaw rate and sideslip in 4-wheel steering cars with actuator constraints. Lecture Notes in Computer Science, 3355/2005. pp. 201-222. ISSN 0302-9743

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we present a new steering controller for cars equipped with 4-wheel steer-by-wire. The controller commands the front and rear steering angles with the objective of tracking reference yaw rate and sideslip signals corresponding to the desired vehicle handling behaviour. The structure of the controller is based on a simplified model of the lateral dynamics of 4-wheel steering cars. We show that the proposed structure facilitates the design of a robust steering controller valid for varying vehicle speed. The controller, which has been designed using classical techniques according to the Individual Channel Design (ICD) methodology, incorporates an anti-windup scheme to mitigate the effects of the saturation of the rear steering actuators. We analyse the robust stability of the resulting non-linear control system and present simulation results illustrating the performance of the controller on a detailed non-linear vehicle model.