Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

New criss-cross type algorithms for linear complementarity problems with sufficient matrices

Csizmadia, Zsolt and Illes, T. (2006) New criss-cross type algorithms for linear complementarity problems with sufficient matrices. Optimization Methods and Software, 21 (2). pp. 247-266. ISSN 1055-6788

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We generalize new criss-cross type algorithms for linear complementarity problems (LCPs) given with sufficient matrices. Most LCP solvers require a priori information about the input matrix. The sufficiency of a matrix is hard to be checked (no polynomial time method is known). Our algorithm is similar to Zhang's linear programming and Akkeles¸, Balogh and Ille´s's criss-cross type algorithm for LCP-QP problems. We modify our basic algorithm in such a way that it can start with any matrix M , without having any information about the properties of the matrix (sufficiency, bisymmetry, positive definiteness, etc.) in advance. Even in this case, our algorithm terminates with one of the following cases in a finite number of steps: it solves the LCP problem, it solves its dual problem or it gives a certificate that the input matrix is not sufficient, thus cycling can occur. Although our algorithm is more general than that of Akkeles¸, Balogh and Ille´s's, the finiteness proof has been simplified. Furthermore, the finiteness proof of our algorithm gives a new, constructive proof to Fukuda and Terlaky's LCP duality theorem as well.