Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Anstreicher-Terlaky type monotonic simplex algorithms for linear feasibility problems

Bilen, F. and Csizmadia, Zsolt and Illes, T. (2007) Anstreicher-Terlaky type monotonic simplex algorithms for linear feasibility problems. Optimization Methods and Software, 22 (4). pp. 679-695. ISSN 1055-6788

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Based on the pivot selection rule [Anstreicher, K.M. and Terlaky, T., 1994, A monotonic build-up simplex algorithm for linear programming. Operations Research, 42, 556-561.] we define a new monotonic build-up (MBU) simplex algorithm for linear feasibility problems. An mK upper bound for the iteration bound of our algorithm is given under a weak non-degeneracy assumption, where K is determined by the input data of the problem and m is the number of constraints. The constant K cannot be bounded in general by a polynomial of the bit length of the input data since it is related to the determinants (of the pivot tableau) with the highest absolute value. An interesting local property of degeneracy led us to construct a new recursive procedure to handle strongly degenerate problems as well. Analogous complexity bounds for the linear programming versions of MBU and the first phase of the simplex method can be proved under our weak non-degeneracy assumption.