Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

EPR characterisation of platinum nanoparticle functionalised CNT hybrid materials

Dennany, Lynn and Sherrell, Peter and Chen, Jun and Innis, Peter C. and Wallace, Gordon G. and Minett, Andrew I., Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Australia (2010) EPR characterisation of platinum nanoparticle functionalised CNT hybrid materials. Physical Chemistry Chemical Physics, 12. pp. 4135-4141. ISSN 1463-9076

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The use of nanostructured carbon materials as electrodes for energy storage and conversion is an expanding area of research in recent years. Herein, Platinum nanoparticles have been deposited onto both multi-walled and single-walled carbon nanotubes via a microwave assisted polyol reduction method. This interaction has been probed with electron paramagnetic resonance (EPR) and Raman spectroscopies to elucidate the charge/electron transfer interactions between the Pt nanoparticles and the CNTs. Observed shifts in the g factors of the CNTs are indicative of such an electronic interactions, suggesting covalent attachment of the nanoparticles with the carboxylic groups on the CNTs, formed during the microwave-assisted reduction process. The Pt decorated CNTs show a dramatic increase in electrochemical behaviour in terms of high reversible capacity and relatively stable cycle performance compared to unmodified CNTs increasing their applicability in energy storage devices. For instance, significant increases in the electrochemical double layer capacitance is observed for the CNT-NP composite electrode (80 % for SWNTs and 50 % for MWNT).