Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

A variational field theory for solutions of charged, rigid particles

Lue, L. (2006) A variational field theory for solutions of charged, rigid particles. Fluid Phase Equilibria, 241 (1-2). pp. 236-247. ISSN 0378-3812

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A general field theoretic formalism is developed for dealing with solutions of particles with rigid charge distributions. Combined with the mean-field approximation, the resulting theory extends the Poisson-Boltzmann equation to incorporate the presence of structured ions (e.g., uniformly charged rods or disks). When combined with a first-order variational approximation, the resulting theory, in the low density limit, is a generalization of the Debye-Huckel theory to extended charge distributions and reduces to the standard expressions when applied to point charges. A first-order variational theory is applied to solutions of uniformly charged disks and to solutions of uniformly charged disks with a neutralizing ring charge to examine the influence of electrostatic interactions on the isotropic-nematic transition.