Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Developing a conceptual model for exploring emergence

McDonald, D.M. and Weir, G.R.S. (2006) Developing a conceptual model for exploring emergence. In: International Conference on Complex Systems, 2006-06-25 - 2006-06-30.

[img]
Preview
PDF (strathprints002786.pdf)
strathprints002786.pdf

Download (169kB) | Preview

Abstract

Emergence is a fundamental property of complex systems and can be thought of as a new property or behaviour which appears due to non-linear interactions within the system; emergence may be considered to be the 'product' or by-product of the system. For example, within social systems, social capital, the World Wide Web, law and indeed civilization in general may be considered emergent, although all within different time scales. As our world becomes increasingly more interconnected, understanding how emergence arises and how to design for and manage specific types of emergence is ever more important. To date, the concept of emergence has been mainly used as an explanatory framework (as used by Johnson 2001), to inform the logic of action research (Mitleton-Kelly 2004) or as a means of exploring the range of emergent potential of simulation of real complex systems (Axelrod 2003). If we are to improve our ability to manage and control emergence, we need first to directly study the phenomenon of emergence, its causes and consequences across real complex systems.